開關(guān)電源的最大效率驗(yàn)證和檢定
為保證在可接受的折衷方案下達(dá)到最佳效率,驗(yàn)證和檢定開關(guān)電源(SMPS)的設(shè)計(jì)是十分重要的。可通過下列方式完成:測定開關(guān)功率損耗和磁功率損耗來確定電源效率;測定電源質(zhì)量和諧波掌握電源線路上的開關(guān)電源的作用。
電力系統(tǒng)的最大能量損耗通常發(fā)生在AC/DC和DC/DC電源的功率轉(zhuǎn)換期間;旧厦總設(shè)計(jì)都會優(yōu)先考慮節(jié)能,因此轉(zhuǎn)換功率在80%到90%之間的開關(guān)電源成為主流。理想狀態(tài)下,所有電源都按照數(shù)學(xué)模型工作。然而,在現(xiàn)實(shí)世界中卻存在著各種問題,例如:部件存在缺陷、負(fù)載變化不定、線路功率失真和環(huán)境頻繁變化。為保證在可接受的折衷方案下取得最佳效率,關(guān)鍵是要驗(yàn)證和檢定開關(guān)電源的設(shè)計(jì)。要完成這些任務(wù),通常需要測定開關(guān)功率損耗和磁功率損耗來確定開關(guān)電源的效率,還要測定電源質(zhì)量和諧波掌握電源線路上的開關(guān)電源的作用。
測量開關(guān)損耗
開關(guān)電源中的開關(guān)晶體管切換速度快,最大程度地減少了能量損耗。對于開關(guān)電源來說,開關(guān)晶體管在開或關(guān)狀態(tài)下少量散熱時(shí)損耗的能量最多。在切換期間發(fā)生能量損耗,這是因?yàn)閮Υ嬖诙䴓O管的電能以及儲存在寄生電感和寄生電容的電能被釋放出來!瓣P(guān)斷損耗”是指設(shè)備從開到關(guān)過程中的損耗!瓣P(guān)斷損耗”同樣也指開關(guān)設(shè)備從關(guān)到開過程中的能量損耗。下面是計(jì)算切換過程中產(chǎn)生的能量損耗的公式:
式中:ETRANSITION指開關(guān)在切換過程中產(chǎn)生的能量損耗;vA(t)指開關(guān)的瞬時(shí)電壓;iA(t)指開關(guān)的瞬時(shí)電流;t1指切換完成的時(shí)間;t0指切換開始的時(shí)間。
整個開關(guān)周期發(fā)生的總能量損耗由接通開關(guān)損耗、關(guān)斷開關(guān)損耗和導(dǎo)電損耗構(gòu)成。下面是總損耗的計(jì)算公式:ELOSS=ETURN-ON+EON+ETURN-OFF。式中:ELOSS指開關(guān)周期內(nèi)晶體管的能量損耗;ETURN-ON和ETURN-OFF均為開關(guān)損耗;EON指導(dǎo)電損耗。
分析上述損耗對檢定電源、估計(jì)其效率是必要的,可采用示波器測開關(guān)損耗(圖1)。使用帶有專業(yè)功率分析軟件的示波器,可測出多開關(guān)周期的開關(guān)損耗和導(dǎo)電損耗,從而確定設(shè)備在不同時(shí)間的特性。從測量統(tǒng)計(jì)數(shù)據(jù)中,可觀察到測量結(jié)果的變化情況。要準(zhǔn)確的測出接通損耗和關(guān)斷損耗是一項(xiàng)挑戰(zhàn),因?yàn)閾p耗只在短時(shí)間內(nèi)發(fā)生,在開關(guān)周期剩下的時(shí)間里是極少出現(xiàn)的。測定上述損耗需要對電壓波形和電流波形進(jìn)行精確的計(jì)時(shí),而且測量系統(tǒng)的偏差要達(dá)到最小。
圖1 帶有專業(yè)功率分析軟件的示波器
圖1 帶有專業(yè)功率分析軟件的示波器可顯示多開關(guān)周期的開關(guān)損耗和導(dǎo)電損耗,從而確定設(shè)備在不同時(shí)間的特性 圖2 可用帶有功率分析軟件的示波器功率損耗測單繞組電感器的功率損耗。通道1($軌跡)是電感器上的電壓,通道2(藍(lán)色軌跡)是用非插入式電流探針測得的通過電感器的電流。功率測量軟件自動計(jì)算功率損耗,并以圖的形式顯示出來(278.1 mW)
測量磁功率損耗
電感器和互感器通常功率損耗都比較小,常被開關(guān)電源用來濾波和改變電壓電平。電感器的阻抗隨頻率的升高而增大,阻止的高頻率比低頻率多。這種特性對電源輸入輸出的濾波有利。
互感器將初級繞組的交流電壓和交流電流耦合到次級繞組,使電壓或電流(其中一種)的信號電平增大或減小;ジ衅鞒跫壙山邮120V的電壓,通過按比例增大次級的電流,使次級的電壓降到12V;ジ衅鞯某跫壓痛渭壊捎玫牟皇请姎膺B接,在電路元件之間還是需要隔離。
磁功率損耗影響電源的效率、可靠性和熱性能。與磁性元件相關(guān)的功率損耗有兩種:鐵芯的鐵耗和銅繞組的銅耗。磁損耗等于鐵耗和銅耗之和。其中,鐵耗由磁滯損耗和渦流損耗組成,銅耗則是銅繞組線的電阻引起的。
從磁芯賣方提供的數(shù)據(jù)表和帶功率測量軟件的示波器得出的結(jié)果可推導(dǎo)出總功率損耗和磁芯損耗。然后,通過這兩個值計(jì)算出銅耗。知道功率損耗元件后,可弄清出磁性元件產(chǎn)生功率損耗的原因。
磁性元件總功率損耗的計(jì)算方法部分取決于被測元件的類型。被測設(shè)備可為單繞組電感器、多繞組電感器或互感器。圖2所示為單繞組電感器的測量結(jié)果。通道1($軌跡)是電感器上的電壓,通道2(藍(lán)色軌跡)是用非插入式電流探針測得的通過電感器的電流。功率測量軟件自動計(jì)算功率損耗,并以圖的形式顯示出來(278.1 mW)。
圖2 單繞組電感器的測量結(jié)果
為達(dá)到最佳性能,設(shè)計(jì)者一般利用從廠商處獲得的磁滯曲線來指定磁性元件。在特性曲線中規(guī)定了磁性元件磁芯材料的性能范圍。為保證運(yùn)行過程中工作電壓和工作電流保持在磁滯曲線的線性區(qū)域內(nèi),有必要對開關(guān)電源內(nèi)的磁性元件進(jìn)行檢定。采用專用功率測量軟件,可以大大的簡化用示波器測定磁性的步驟。很多時(shí)候,只需測出電壓和勵磁電流,然后由軟件來完成磁性測量的計(jì)算。磁性測量可在單繞組電感器上進(jìn)行,也可在配有初級電流源和次級電流源的互感器上進(jìn)行。
圖3 本圖所示為互感器的磁滯曲線圖,通道1($軌跡)是互感器電壓,通道2(藍(lán)色軌跡)是初級電流,通道3(金色軌跡)是次級電流。軟件根據(jù)來自通道2和通道3的數(shù)據(jù)來確定勵磁電流
圖3 互感器的磁滯曲線圖
圖4 在沒有兩根探針偏斜校正的情況下測出的結(jié)果(5.141W)
在圖3中,通道1($軌跡)是互感器電壓,通道2(藍(lán)色軌跡)是初級電流,通道3(金色軌跡)是次級電流。軟件根據(jù)來自通道2和通道3的數(shù)據(jù)來確定勵磁電流。某些功率測量軟件還能精確地繪制磁性元件的磁滯曲線圖,并檢定其特性。在軟件繪制磁滯曲線圖前,必須先輸入磁芯的圈數(shù)、磁長度和橫截面積。
探測考慮因素
采用示波器測量功率的話,必須測量MOSFET(金屬氧化物半導(dǎo)體場效應(yīng)晶體管)開關(guān)設(shè)備漏極到源極節(jié)點(diǎn)的電壓和電流或IGBT(絕緣柵雙極晶體管)集電極到發(fā)射極節(jié)點(diǎn)的電壓和電流。這就需要高壓差分探針和電流探針。每個探針都有各自的特性傳播時(shí)延。兩個時(shí)延之間的差或偏移會造成功率測量不準(zhǔn)、定時(shí)測量失真。
了解探針傳播時(shí)延對最大峰值功率和面積測量的影響具有重要的意義。畢竟,功率是電壓和電流作用的產(chǎn)物。如果兩個相乘變量不是完全時(shí)序一致,結(jié)果則是錯誤的。探針沒有正確地進(jìn)行偏斜校正時(shí),測量結(jié)果(如開關(guān)損耗)的準(zhǔn)確性會變差。例如,圖4顯示的是在沒有先對兩根探針進(jìn)行偏斜校正的情況下工程師測出的結(jié)果(5.141W)。圖5中所示結(jié)果則證明了探針偏斜校正的重要性。本例表明偏移會造成5.3%的測量誤差。進(jìn)行準(zhǔn)確的偏斜校正會減小峰-峰功率損耗的測量誤差。
有些功率測量軟件可自動對選中的探針組合進(jìn)行偏斜校正。它通過有源信號調(diào)整電壓通道和電流通道之間的時(shí)延,從而消除在探針之間產(chǎn)生的傳播時(shí)延。靜態(tài)偏斜校正(如可用)功能實(shí)現(xiàn)的基礎(chǔ)是特定電壓探針和電流探針具有恒定而重復(fù)的傳播時(shí)延。靜態(tài)偏斜校正功能根據(jù)選定探針的傳播時(shí)間嵌入表自動調(diào)整選定電壓通道和電流通道之間的時(shí)延。
此外,差分探針和電流探針可存在小幅偏差。由于偏差會影響精確度,開始測量之前應(yīng)該先消除偏差。一些探針本身植入了自動消除偏差的方法。這種探針與示波器一起使用,可消除信號通道中的任何直流偏移誤差。電流探針互感器的磁芯中可產(chǎn)生大量輸入電流,通過消磁可除去殘余的全部直流磁通。
電力線路
對AC/DC電源而言,電力線路測量(如電能質(zhì)量和線路諧波等)對檢定開關(guān)電源的相互作用及其使用環(huán)境有重要的意義。實(shí)際上,電力線路總是存在失真和雜質(zhì),所以從未供應(yīng)過理想的正弦波。而且,開關(guān)電源對源呈現(xiàn)出非線性負(fù)載的特性,因此,電壓波形和電流波形是不理想的。開關(guān)電源會吸引輸入周期某部分的電流,使輸入電流波形生成諧波。確定這些失真因素的影響是電力工程設(shè)計(jì)中的重要組成部分。
圖5 在對圖4中的信號進(jìn)行偏斜校正后,峰值振幅增大到5.415W或5.3%以上
圖6 顯示的是電源負(fù)載電流的諧波分析結(jié)果。
軟件自動計(jì)算電流諧波,確定與基本值和均方根值相對的總諧波失真度(THD)
為了確定電力線路的功率消耗和功率失真,要測量輸入階段的電能質(zhì)量。工程師傳統(tǒng)上采用功率表和諧波分析器來測量電能質(zhì)量,而帶功率測量軟件的數(shù)字示波器成為一項(xiàng)更好的選擇。
示波器有許多優(yōu)點(diǎn)。測試儀器必須最高能捕捉到諧波元件基波的第50次諧波。根據(jù)適用的本地標(biāo)準(zhǔn),電力線路頻率通常是50Hz或60Hz。有時(shí)應(yīng)用于軍事和航空電子領(lǐng)域時(shí),線路頻率可為400 Hz。信號畸變可包含更好的頻率,具有高取樣速率的現(xiàn)代示波器能捕捉大分辨率的快速變化事件。相比之下,常規(guī)功率表因反應(yīng)較慢,會忽略信號的細(xì)節(jié)。示波器的記錄長度基本上足以采集完整的周期,即便是在高取樣分辨率時(shí)。
電流諧波
開關(guān)電源容易產(chǎn)生以異次序?yàn)橹鞯闹C波,異次序諧波能返回電網(wǎng),隨著越來越多的開關(guān)電源接到電網(wǎng)中,這種效應(yīng)開始累積。舉例來說,當(dāng)辦公室新添更多的臺式電腦時(shí),傳回電網(wǎng)的諧波失真總比例會增大。失真造成熱量在電網(wǎng)的電纜和變壓器中聚積,所以最大程度的減少諧波就變得尤為重要。EN/IEC61000-3-2等規(guī)范性標(biāo)準(zhǔn)規(guī)定了特殊非線性負(fù)載的電能質(zhì)量。
采用帶功率測量軟件的示波器,諧波分析就跟普通的波形測量一樣簡單。 圖6顯示的是電源負(fù)載電流的諧波分析結(jié)果。在這種情況下,軟件自動計(jì)算電流諧波并確定重要的值,如與基本值和均方根(RMS)值相對的總諧波失真度(THD)。上述測量有助于分析其是否符合EN/IEC61000-3-2和軍事標(biāo)準(zhǔn)1399等標(biāo)準(zhǔn)。部分軟件會自動將測量結(jié)果與標(biāo)準(zhǔn)進(jìn)行比較,以便快速檢查設(shè)備是否合格。
幾乎每種電子產(chǎn)品的組成中都有電源,開關(guān)電源因高達(dá)90%的節(jié)能效率,已經(jīng)成為市場的主流。為了驗(yàn)證和檢定開關(guān)電源的設(shè)計(jì)以確保其能在實(shí)際環(huán)境中發(fā)揮良好的功能,常需測量開關(guān)功率損耗、磁功率損耗以及電能質(zhì)量和電力諧波。雖然電源測量是復(fù)雜的,具有適當(dāng)?shù)奶綔y工具和自動化測量軟件的示波器可使測量變得簡單。
【上一個】 開關(guān)電源保護(hù)電路的研究 | 【下一個】 一種實(shí)用開關(guān)電源的設(shè)計(jì) |
^ 開關(guān)電源的最大效率驗(yàn)證和檢定 |